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ABSTRACT

Simultaneously clustering rows and columns of a matrix,
co-clustering can exploit the complex relationships between
two different domains and identify groups of distinct nature.
In this work, we introduce CI-GAN, a novel GAN-based
approach for co-clustering. The model exploits two distinct
GAN that cluster each domain independently and combines
them intelligently by maximizing the mutual information be-
tween the input data and the generated co-clusters. From the
experiments constructed with image, audio, and text datasets,
it is found that such a systematic way of sharing information
between the networks can improve co-clustering performance
substantially; when CI-GAN is compared against five stan-
dard algorithms, it consistently reports the highest accuracy
on both synthetic and real datasets.

Index Terms— Co-clustering, Generative modeling

1. INTRODUCTION

Capable of clustering both rows and columns of a data matrix
simultaneously, co-clustering is an effective data analysis
technique which exploits the duality of the entries. Circum-
venting the limitations of traditional clustering algorithms,
various co-clustering algorithms have been leveraged to ana-
lyze multidimensional data in vastly different fields including
information retrieval, computer vision as well as recommen-
dation systems [1, 2, 3]. Realizing the wide range of use
cases, mainly arose from the diversity in data format, many
algorithms exploit the duality in different ways [4, 5, 6, 7].
However, co-clustering using representation learning is still
veiled in mystery despite its effectiveness in extracting
semantic features from unlabeled data. In this paper, we take
the first step into the uncharted domain with Co-Informatic
Generative Adversarial Network (CI-GAN), an information-
theoretic extension of GAN for co-clustering.

The main components of CI-GAN are two InfoGAN [8]
which are capable of distinguishing different types of rows
and columns by maximizing the mutual information between
the noise variables and the observations. To fully exploit the
interplay between the two independent data representations,
our model further combines the two networks into a single

architecture intelligently by maximizing the mutual informa-
tion between the input data and the generated co-clusters. It
is motivated by the belief that a good generative modeling is
effective not only to learn the disentangled representations of
rows and columns independently, but also to learn the joint
disentangled representation that can decipher the domain in-
terplay structures in the correlation data space.

Applying different techniques to solve the maximization
problem, we introduce two architectures under the name of
CI-GAN. Our first version, Combiner, maximizes the mutual
information objective in a relatively simplistic way; it cap-
tures the entries of similar behavior directly using an addi-
tional encoding vector. On the other hand, the second ver-
sion, AutoEncoder, maximizes the lower bound of the mutual
information objective by reconstructing the original data from
paired domain-specific clustering labels.

To understand the effectiveness of CI-GAN, we evaluate
the two architectures against five standard co-clustering algo-
rithms on both synthetic and real datasets; synthetic datasets
are designed to cover a wide range of general co-clustering
cases, whereas real datasets focus on the most complicated
case of co-clustering where the relationship between the do-
mains are not sufficiently explicit. Throughout the experi-
ments, we realize that the augmented objective of CI-GAN is
particularly effective when the interrelation between the do-
mains is fairly complex; our models consistently achieve the
highest accuracy on various co-clustering cases.

2. GENERATIVE MODELING FOR CLUSTERING

Recently, neural networks have been a popular mechanism
for generating clustering-friendly representations increasing
the clustering accuracy in many domains [7]. One of the
popular trends in this area is to use GAN as demonstrated
by InfoGAN [8], BiGAN [9], and ClusterGAN [10].

Presented by Goodfellow et al., GAN consists of two neu-
ral networks, generator G and discriminator D. The goal of
GAN is to generate realistic samples using G which is trained
to fool D. The role of the adversarial network D is to distin-
guish real data from the output of G improving the quality of
the generated data [11]. Overall, the objective can be written
as follows, for a random variable z and a data sample x:
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Fig. 1. Architecture of Combiner (left) and AutoEncoder (right). Both networks have G, D, and Q for clustering rows (∗r) and
columns (∗c). However, training Combiner involves Qco that reconstructs co-cluster encoding vector d, whereas AutoEncoder
exploits a generator-like network R that reconstructs a paired original data x̂ from a pair of generated cluster labels, c′r and c′c.

min
G

max
D

V (D,G)

= Ex∼Pdata
[logD(x)] + Ez∼Pnoise [log(1−D(G(z)))]

When GAN is trained correctly, it can learn the mapping
from a random distribution Pnoise to the data distribution
Pdata. However, it has a clear limitation: the mapping is non-
deterministic and unpredictable.

To overcome the limitation, InfoGAN introduces an
adjustable generator; along with z, the generator of InfoGAN
takes in an additional encoding vector c which captures
the disentangled representation of the data distribution. By
maximizing the mutual information I between c and the
observation, the encoding vector can be used as a knob to
generate different styles of data. Unfortunately, it is found
that maximizing I directly is quite difficult. Therefore, the
authors introduce an additional network Q which maximizes
LI , the lower bound of I , by reconstructing the original
encoding vector c from the generated data [8].

min
G,Q

max
D

V (D,G)− LI(G,Q)

3. CI-GAN

Although many variants of generative modeling have demon-
strated their effectiveness in grouping data of similar pattern,
we are not aware of any application for co-clustering problem.
Therefore, we attempt to bridge this gap with CI-GAN, a
novel GAN-based co-clustering framework.

The encoding vector c of InfoGAN can either be categori-
cal or continuous. When c is categorical, each variation is of-
ten mapped to a different type of data as in the case of cluster-
ing. Given that co-clustering involves two distinct clustering
processes, namely row and column clustering, our framework
starts off with two distinct InfoGAN models that cluster rows
(∗r) and columns (∗c) independently.

rows: min
Gr,Qr

max
Dr

V (Dr, Gr)− LI(Gr, Qr)

columns: min
Gc,Qc

max
Dc

V (Dc, Gc)− LI(Gc, Qc)

Unfortunately, the two independent models cannot capture
the complex relationship between rows and columns. In this
work, we combine them in a way that the two components
work together to maximize the mutual information between
the input data and the generated co-clusters. We introduce
two approaches, Combiner and AutoEncoder, which differ in
the techniques used for the maximization. Due to the limited
space, we focus on describing how each variant is designed
and relegate other details to Appendix 1 and 2.

In the following section, z refers to a random variable,
c and d refer to categorical encoding vectors and x refers to
the input data. Since CI-GAN involves reconstruction of the
original data and the encoding vectors, variables without any
additional style refer to the original form, ∗ refer to samples
generated by G, ∗′ refer to the reconstructed encoding vec-
tors, and ∗̂ refer to the reconstructed samples of ∗. Lastly,
subscripts are added to indicate components specific to row
or column: ∗r and ∗c, respectively.

Combiner
As a natural extension of InfoGAN, the first approach is

to introduce another categorical vector d for every co-cluster
(see the left architecture in Figure 1). Since distinct row and
column cluster pair represents a co-cluster, d is designed to
have a size of cr × cc. Consequently, we introduce an auxil-
iary network Qco and enable the two clustering tasks to share
the information they find. Without loss of generality, the ob-
jective for Combiner can be defined as follows:

min
G,Q

max
D

V (Dr, Gr) + V (Dc, Gc)

− LI(Gr, Qr)− LI(Gc, Qc)− LI(G,Qco)

AutoEncoder
The second variant is inspired by information-theoretic

co-clustering of Dhillon et al. [1]: co-clustering problem is an
optimization problem which maximizes I between the orig-
inal data and the generated co-clusters. Applying the same
concept to CI-GAN, we introduce the following idea.
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Fig. 2. Sample synthetic datasets illustrating different co-clustering cases. gist ncar r colormap from Matplotlib
is used to color each entry. Starting from left to right: Diagonal, Checker-Shuffled, Checker-Ordered,
Mixed-Identical, Mixed-Similar.

max I(xr, xc; c
′
r, c
′
c)

= max I(xr, xc;Qr(xr), Qc(xc))

= max I(xr, xc;Qr(Gr(zr, cr)), Qc(Gc(zc, cc)))

Together, the objective can be formulated as follows:

min
G,Q

max
D

V (Dr, Gr) + V (Dc, Gc)− I(x;Q(G(z, c)))

I(x;Q(G(z, c)))

= I(xr, xc;Qr(Gr(zr, cr)), Qc(Gc(zc, cc)))

Unfortunately, it is found that constructing the lower
bound of I(x;Q(G(z, c))), Lx, is quite difficult because the
derivation involves nested posterior distributions along with
the assumption that PG has the same distribution as Pdata.
To overcome the limitation, AutoEncoder introduces another
network R which reconstructs the original pairs of row and
column samples from the two independent cluster labels c′r
and c′c as shown in Figure 1.

min
G,Q

max
D

V (Dr, Gr) + V (Dc, Gc)

− LI(Gr, Qr)− LI(Gc, Qc)− Lx(G,R)

4. EXPERIMENTAL SETUP

As we study existing literature on co-clustering, we have
found that most works compare the algorithms only based
on row clustering performance. When we review the im-
plementation of Deep Co-Clustering [6], it is found that the
column labels are not used to calculate the reported metrics.
Similarly, Role et al. neglect the column labels in the report
for CoClust [12]. From our investigation, it is found that such
way of co-clustering evaluation is often inevitable because
ground truth co-cluster labels are unknown.

In order to reduce the misalignment between the true
co-clustering performance and the reported metrics in this
work, we exploit datasets of which both rows and columns
are clearly labeled; a co-cluster label is defined as a pair of
row and column labels. Consequently, we are able to evaluate
the full potential of different co-clustering algorithms.

For the experiments, CI-GAN models are implemented
with PyTorch and compared against the five most stan-
dard algorithms: co-clustering by bipartite graph partition-
ing [13], spectral bi-clustering [3], information-theoretic
co-clustering [1], co-clustering by spectral approximation [4],
and CoClus [2, 5]. To improve readability, they are short-
ened to Spec-Co, Spec-Bi, Info-CC, SA-CC, and CoClus, re-
spectively. For Spec-Co and Spec-Bi, we leverage scikit-learn
package and for the remaining algorithms, we leverage the
implementations provided by CoClust package [12].

The three metrics we use to compare the algorithms are
accuracy (ACC), adjusted Rand index (ARI), and normalized
mutual information (NMI). Since clustering is an unsuper-
vised task, assigned labels can be substantially different from
the original labels even though the underlying co-clusters are
identical. This does not cause any issue for ARI and NMI
because they are symmetric metrics. However, ACC is not
symmetric and the mismatch can make the value fluctuate.
Therefore, we apply Hungarian algorithm [14] to make sure
that ACC is calculated from the right mapping. Since a strong
correlation is observed among the three metrics, we mainly
compare the algorithms based on ACC in this work.

5. EXPERIMENTS ON SYNTHETIC DATASETS

For the first experiment, we evaluate each algorithm on five
synthetic datasets which cover vastly different co-clustering
cases (see Figure 2). Each dataset has a size of 50, 000 ×
50, 000 with values between 0 to 1. The number of clusters for
each dimension is set to 4, resulting in 16 distinct co-clusters.
Since each of the row and column samples is too huge to be
directly fed into D, we simply select 196 indices at random
but more sophisticated dimensionality reduction techniques
such as PCA or AutoEncoder can be applied.

Prior to the experiments, we find two sets of hyperpa-
rameters in which the two models produce consistent results
across the five datasets (details are described in Appendix 3).
To minimize bias, ten different datasets are used; rows and
columns are shuffled and augmented with random noise. In
this work, we report the averaged metrics.
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Table 1. Performance of different co-clustering algorithms on the five synthetic datasets.

Algorithm Diagonal Checker-Shuffled Checker-Ordered Mixed-Identical Mixed-Similar
NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC NMI ARI ACC

Spec-Co 1.000 1.000 1.000 0.750 0.935 0.784 0.319 0.466 0.241 0.231 0.477 0.222 0.221 0.434 0.198
Spec-Bi 1.000 1.000 1.000 1.000 1.000 1.000 0.114 0.056 0.018 0.459 0.749 0.489 0.461 0.754 0.489
Info-CC 0.344 0.741 0.378 0.556 0.855 0.576 0.751 0.921 0.766 0.250 0.707 0.333 0.250 0.707 0.333

SA-CC 1.000 1.000 1.000 0.910 0.908 0.839 0.251 0.323 0.135 0.291 0.503 0.205 0.278 0.506 0.210
CoClus 0.588 0.847 0.585 0.344 0.741 0.378 0.250 0.707 0.333 0.250 0.707 0.333 0.250 0.707 0.333

Combiner 1.000 1.000 1.000 1.000 1.000 1.000 0.779 0.585 0.682 0.757 0.511 0.549 0.772 0.524 0.551
AutoEncoder 1.000 1.000 1.000 1.000 1.000 1.000 0.913 0.838 0.895 0.810 0.569 0.568 0.786 0.565 0.616
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Fig. 3. Co-clustering results on Checker-Ordered of which the entries of the same labels are grouped. From left to right,
with ACC in brackets: Original, Spec-Bi (0.037), CoClus (0.333), Combiner (0.640), AutoEncoder (1.000).

5.1. Datasets

Diagonal
In many cases, co-clusters are based on one-to-one map-

ping of row and column cluster. When rows and columns
of such matrix are grouped, target co-clusters can be aligned
along the diagonal axis and non-diagonal co-clusters exhibit
similar behavior (see the first diagram in Figure 2). We cate-
gorize this type of matrix as Diagonal. To construct such
matrix, we simply assign different values from [0.1, 0.9] for
each of the diagonal co-clusters.

Checker-Shuffled & Checker-Ordered
Another common structure of co-clustering problem is

Checker-Shuffled where each of the co-clusters shows
different characteristics; a random value from [0.1, 0.9] is
assigned to each group. Throughout the experiments, we find
that many algorithms fail to co-cluster the matrix when row
and column clusters have the same pattern but differ by con-
stant: Checker-Ordered. In this matrix, the values of
the co-clusters are incremented by the same magnitude. The
second matrix in Figure 2 illustrates Checker-Shuffled
and the third illustrates Checker-Ordered.

Mixed-Identical & Mixed-Similar
Matrices of the aforementioned patterns may not require

an explicit algorithm for co-clustering as two independent row
and column clustering algorithms are sufficient. However,
if multiple row or column clusters exhibit the same pattern,
distinguishing them without considering both axes is impos-
sible. The fourth matrix in Figure 2, Mixed-Identical,
captures such scenario. Column clusters 0 and 1 cannot be

distinguished without considering row clusters 0 and 1. Sim-
ilarly, row clusters 2 and 3 cannot be distinguished without
considering column clusters 2 and 3. In practice, such case
is rare because each cluster often introduces different noise:
Mixed-Similar, the fifth matrix.

5.2. Results

Table 1 summarizes the performance of each algorithm on the
five synthetic datasets.1 As mentioned in the previous sec-
tion, co-clustering Diagonal and Checker-Shuffled
are found to be relatively easy; Spec-Bi, Combiner, and
AutoEncoder demonstrate superior performance than others
finding every co-cluster on both datasets.

On the other hand, most of the standard algorithms gen-
erally report lower ACC for Checker-Ordered. The
only exception is Info-CC which achieves higher ACC of
76.6%. It is found that Combiner and AutoEncoder report
comparable ACC of 68.2% and 89.5%, respectively. To
better understand the performance, sample co-clusters for
Checker-Ordered datasets are shown in Figure 3. The
visualization also aligns with our finding: CI-GAN models
can learn the joint disentangled representation better.

On the two Mixed-* datasets, all the algorithms strug-
gle to distinguish different co-clusters. Among the standard
algorithms, Spec-Bi is found to be the most stable with the
ACC of 48.9% on both datasets. AutoEncoder has shown
the highest ACC, 56.8% on Mixed-Identical and 61.6%
on Mixed-Similar. Combiner reports similar ACC to its
variant, 54.9% and 55.1%, respectively.

1Appendix 4 illustrates co-clusters generated from the experiments
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Fig. 4. Sample co-clusters between FERG-DB images and
SemEval tweets (represented as word clouds).

Altogether, CI-GAN models demonstrate the most stable
performance. Between the two variants, AutoEncoder is more
robust and flexible; reconstructing paired original data x̂ from
generated cluster labels c′ is more effective in maximizing
the mutual information than generating co-cluster encoding
vector d′ from original data x.

6. EXPERIMENTS ON REAL DATASETS

Even though the experiments on the synthetic datasets cover
a wide range of co-clustering cases, they have failed to mimic
the most important scenario: the relationship between row
and column clusters are strong but not sufficiently explicit. In
the following sections, we further analyze the robustness of
CI-GAN by evaluating each algorithm on datasets of multiple
data formats; image and audio make up the first dataset while
image and text make up the other dataset. Again, each of the
experiments is repeated ten times and the averaged results are
used to compare the algorithms.

6.1. Digit Co-clustering

The first task is to co-cluster image and audio samples that
represent the same digit. For image, we exploit MNIST, the
well-known image dataset of handwritten digits [15]. For
audio, we use the Google Speech Commands (GSC) dataset
which consists of one-second spoken utterances for the ten
digits [16]. Since the GSC dataset contains about 3,000 audio
clips per digit, we have randomly selected the same number
of images constructing datasets of 30,000 samples for each
domain. To reduce the feature size, we feed each sample into
a network that generates a vector of size 196.

For the baseline algorithms, we need a matrix where rows
represent one dimension and columns represent the other. To
construct such matrix, we use the technique introduced by
Loeff et al.: each index of the matrix is a dot product of row
and column samples [17]. For the sake of consistency, the
same set of reduced vectors is used to generate the matrix.

Table 2. Performance of different algorithms for digit and
sentiment co-clustering.

Algorithm Digit Sentiment
NMI ARI ACC NMI ARI ACC

Spec-Co 0.561 0.228 0.389 0.641 0.418 0.626
Spec-Bi 0.604 0.266 0.394 0.634 0.415 0.583
Info-CC 0.613 0.282 0.402 0.621 0.367 0.503
SA-CC 0.681 0.396 0.512 0.627 0.407 0.577
CoClus 0.427 0.077 0.103 0.513 0.247 0.311

Combiner 0.807 0.894 0.917 0.413 0.471 0.685
AutoEncoder 0.805 0.871 0.922 0.469 0.544 0.688

As described in the first column of Table 2, the highest
ACC reported from the standard algorithms is only 51.2%.
On the other hands, both variants of CI-GAN achieve
much higher ACC demonstrating their robustness; Combiner
reports 91.7% and AutoEncoder reports 92.2%. This indicates
that CI-GAN is capable of identifying the image and audio of
the same digit without any explicit information about which
digit each sample represents.

6.2. Sentiment Co-clustering

Next, we co-cluster images and texts of the same senti-
ment (Figure 4 illustrates sample co-clusters). The two
datasets are Facial Expression Research Group Database
(FERG-DB) [18] and 2018 SemEval emotion classification
dataset [19]. FERG-DB consists of stylized characters with
annotated facial expressions and SemEval dataset contains
tweets of different emotion classes. Since SemEval dataset
is unbalanced and small in size compared to FERG-DB, we
have selected five classes that have the most number of sam-
ples: “anger”, “disgust”, “fear”, “joy”, and “sadness”. We
then randomly select 500 tweets and images for each class
to construct a dataset of 2,500 samples for each domain. The
size of each feature is again reduced to 196 and the same tech-
nique is used to generate the matrix of two domains.

The second column of Table 2 summarizes our finding.
Spec-Co reports the best performance among the standard
algorithms with the ACC of 62.6%. CI-GAN models again
demonstrate their superior flexibility but the differences are
not as huge as in the former experiment: 68.5% and 68.8%
from Combiner and AutoEncoder, respectively.

6.3. Domain-specific Clustering Performance

In this section, we attempt to understand how CI-GAN is dif-
ferent from the naı̈ve clustering approach: two independent
InfoGAN. Based on Table 3, it is clear that the co-clustering
performance are closely related to the domain-specific clus-
tering performance; the former scores are high when the latter
scores are high. This is expected since we construct the final
co-clustering labels from per-domain clustering labels.
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Table 3. Domain-specific clustering accuracy of CI-GAN for
digit co-clustering and sentiment co-clustering.

Architecture Domain ACC Domain ACC

Two MNIST 0.947 FERG-DB 0.804
Independent GSC 0.884 SemEval 0.404

InfoGAN co-clustering 0.941 co-clustering 0.556

Combiner
MNIST 0.924 FERG-DB 0.808

GSC 0.799 SemEval 0.542
co-clustering 0.917 co-clustering 0.685

AutoEncoder
MNIST 0.938 FERG-DB 0.947

GSC 0.868 SemEval 0.519
co-clustering 0.922 co-clustering 0.688

For the digit co-clustering, the naı̈ve approach reports
higher ACC than CI-GAN. On the other hands, the oppo-
site behavior is observed from the sentiment co-clustering.
This indicates that the information sharing of CI-GAN can
affect the co-clustering performance in a negative way when
the boundaries among the clusters are clear.

Analyzing sentimental information is known to be much
harder than distinguishing digits as the boundaries are not
as explicit. Consequently, CI-GAN outperforms the naı̈ve
approach reinforcing our finding from the two Mixed-*
experiments; CI-GAN models are better at deciphering the
domain interplay structures in the correlation data space.

7. CONCLUSION

In this work, we introduce CI-GAN, co-clustering based on
generative modeling. From our thorough experiments, we
demonstrate that generative modeling with augmented mutual
information can be a powerful tool for co-clustering data of
different types. Future research can explore other variations
of mutual information on CI-GAN architecture.

8. REFERENCES

[1] I. S. Dhillon, S. Mallela, and D. S. Modha,
“Information-theoretic co-clustering,” in Proceedings
of the ninth ACM SIGKDD International Conference on
Knowledge Discovery and Data mining, 2003.

[2] M. Ailem, F. Role, and M. Nadif, “Co-clustering
document-term matrices by direct maximization of
graph modularity,” in Proceedings of the 24th ACM In-
ternational Conference on Information and Knowledge
Management, 2015.

[3] Y. Kluger, R. Basri, J. T. Chang, and M. Gerstein,
“Spectral biclustering of microarray data: Coclustering
genes and conditions,” Genome research, vol. 13, 2003.

[4] L. Labiod and M. Nadif, “Co-clustering for binary and
categorical data with maximum modularity,” in IEEE
International Conference on Data Mining, 2011.

[5] M. Ailem, F. Role, and M. Nadif, “Graph modularity
maximization as an effective method for co-clustering
text data,” Knowledge-Based Systems, vol. 109, 2016.

[6] D. Xu, C. Wei, B. Zong, J. Ni, D. Song, W. Yu, Y. Chen,
H. Chen, and X. Zhang, “Deep co-clustering,” in Pro-
ceedings of the 2019 SIAM International Conference on
Data Mining, 2019.

[7] M. Erxue, G. Xifeng, Z. Gen L. Qiang, C. Jianjing, and
L. Jun, “A survey of clustering with deep learning: From
the perspective of network architecture,” IEEE Access,
vol. 6, 2018.

[8] X. Chen, Y. Duan, R. Houthooft, J. Schulman,
I. Sutskever, and P. Abbeel, “InfoGAN: Interpretable
representation learning by information maximizing gen-
erative adversarial nets,” in Advances in neural informa-
tion processing systems, 2016.
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CI-GAN : CO-CLUSTERING BY INFORMATION MAXIMIZING GENERATIVE
ADVERSARIAL NETWORKS — APPENDIX

1. VARIATIONAL MUTUAL INFORMATION MAXIMIZATION FOR AUTOENCODER

1.1. InfoGAN

To understand the objective of AutoEncoder, we need to understand how InfoGAN exploits variational mutual information
maximization [1] to overcome the difficulties in maximizing I of the following objective (H represents entropy).

min
G

max
D

V (D,G)− I(c;G(z, c))

I(c;G(z, c)) = H(c)−H(c|G(z, c))

Directly maximizing I is found to be difficult as the derivation involves a posterior distribution P (c|x) where x represent
the samples generated by G(z, c). Therefore, Chen et al. exploit variational mutual information maximization and optimize the
lower bound of I(c;G(z, c)), LI , instead. The key idea is to use an auxiliary distribution Q(c|x) to approximate P (c|x) [2].

LI(G,Q) = Ec∼P (c),x∼G(z,c)[logQ(c|x)] +H(c)

Since the lower bound becomes tight as Q(c|x) approaches the true distribution P (c|x), the objective becomes the following.

min
G,Q

max
D

V (D,G)− LI(G,Q)

1.2. AutoEncoder

As previously described in Section 3, we start from the following objective.

min
G,Q

max
D

V (Dr, Gr) + V (Dc, Gc)− I(x;Q(G(z, c)))

I(x;Q(G(z,c))) = I(xr, xc;Qr(Gr(zr, cr)), Qc(Gc(zc, cc)))

Though I(x;Q(G(z, c))) look similar to I(c;G(z, c)) of InfoGAN, directly applying variational mutual information max-
imization to derive the lower bound is not possible due to the nested posterior distributions and the assumption that PG has
the same distribution as Pdata. Therefore, we first derive Lx, the lower bound for I(x;Q(G(z, c))), and exploit the similarity
between I(x;Q(G(z, c))) and I(x;Q(G(z, c))) to derive Lx, the lower bound for I(x;Q(G(z, c))).

Before we dive into the detailed derivation, we accentuate Lemma 5.1 which is originally introduced and proven by Chen et
al. [2]. In this section, we replace x′ with x̂ to be consistent with the notations used in this work.

Lemma 5.1 For random variables X ,Y and function f(x, y) under suitable regularity conditions: Ex∼X,y∼Y |x[f(x, y)] =
Ex∼X,y∼Y |x,x̂∼X|y[f(x̂, y)]

Lx : Lower bound for I(x;Q(G(z, c)))

Along with P (c|x), the maximization of I(x;Q(G(z, c))) involves another posterior distribution P (x|c′). Similar to how
Q(c|x) is used to approximate P (c|x), we introduce another distribution R(x|c′) for approximating P (x|c′).

I(x;Q(G(z, c))) = H(x)−H(x|Q(G(z, c))) (by the definition of I)
= H(x) + Ec′∼Q(G(z,c))[Ex̂∼P (x|c′)[logP (x̂|c′)]]
= H(x) + Ec′∼Q(x)[Ex̂∼P (x|c′)[logP (x̂|c′)]] (x = G(z, c))
≥ H(x) + Ec′∼Q(x)[DKL(P (·|c′) ‖ R(·|c′))︸ ︷︷ ︸

≥ 0

+Ex̂∼P (x|c′)[logR(x̂|c′)]]



= H(x) + Ec′∼Q(x)[Ex̂∼P (x|c′)[logR(x̂|c′)]]
(R(x|c′) is an approximation for P (x|c′))

= H(x) + Ec′∼Q(x),x̂∼P (x|c′)[logR(x̂|c′)]
= H(x) + Ec′∼PQ(x),x̂∼P (x|c′)[logR(x̂|c′)]
= H(x) + Ex∼P (x),c′∼PQ(x),x̂∼P (x|c′)[logR(x̂|c′)]
= H(x) + Ex∼P (x),c′∼PQ(x)[logR(x|c′)] (by Lemma 5.1)

= H(x) + Ex∼P (x),c′∼Q(x)[logR(x|c′)]
= H(x) + Ex∼P (x),c′∼Q(G(z,c))[logR(x|c′)] (x = G(z, c))
= Lx(G,Q,R)

Overall, as the distributions Q and R approach the true posterior distribution, the lower bound becomes tight increasing the
mutual information I(x;Q(G(z, c))).

Lx : Lower bound for I(x;Q(G(z, c)))

To derive Lx, we first assume that PG has the same distribution as Pdata (x = G(z, c)). Also we leverage an auxiliary
distribution R(x|c′) to approximate P (x|c′). Then, Lx can be derived in almost the same way.

I(x;Q(G(z, c))) = H(x)−H(x|Q(G(z, c))) (by the definition of I)
= H(x) + Ec′∼Q(G(z,c))[Ex̂∼P (x|c′)[logP (x̂|c′)]]
= H(x) + Ec′∼Q(x)[Ex̂∼P (x|c′)[logP (x̂|c′)]] (x = G(z, c))
≥ H(x) + Ec′∼Q(x)[DKL(P (·|c′) ‖ R(·|c′))︸ ︷︷ ︸

≥ 0

+Ex̂∼P (x|c′)[logR(x̂|c′)]]

= H(x) + Ec′∼Q(x)[Ex̂∼P (x|c′)[logR(x̂|c′)]]
(R(x|c′) is an approximation for P (x|c′))

= H(x) + Ec′∼Q(x),x̂∼P (x|c′)[logR(x̂|c′)]
= H(x) + Ec′∼PQ(x),x̂∼P (x|c′)[logR(x̂|c′)]
= H(x) + Ex∼P (x),c′∼PQ(x),x̂∼P (x|c′)[logR(x̂|c′)]
= H(x) + Ex∼P (x),c′∼PQ(x)[logR(x|c′)] (by Lemma 5.1)

= H(x) + Ex∼P (x),c′∼Q(x)[logR(x|c′)]
= H(x) + Ex∼P (x),c′∼Q(G(z,c))[logR(x|c′)] (x = G(z, c))
= Lx(G,Q,R)

Given the two lower bounds Lx and Lx, the differences can be summarized as follow:

1. Lx has a constant term H(x) while Lx has H(x)

2. Generator for Lx has a distribution of Pdata while the one for Lx has PG(z,c)

3. The distribution R approximates P (x|c′) in the case of Lx while it approximates P (x|c′) in the case of Lx

Interestingly, the first difference can be ignored as it simply yields that the gap between the two lower bounds is bounded
by a constant value. Furthermore, the second difference is minimized indirectly by GAN—throughout the training process,
generator learns to produce realistic data; the distribution PG(z,c) becomes the distribution Pdata. To minimize the difference
between P (x|c′) and P (x|c′), AutoEncoder exploits the network R which reconstructs the original pair of row and column
samples from the two independent cluster labels c′r and c′c.

Altogether, the objective of AutoEncoder can be written as follows with the architecture in Figure 1.

min
G,Q

max
D

V (Dr, Gr) + V (Dc, Gc)− LI(Gr, Qr)− LI(Gc, Qc)− Lx(G,R)



2. MODEL ARCHITECTURE

As illustrated in Figure 1, Combiner and AutoEncoder share the same architectures for G, D and Q in order to ensure coherence.
First of all, the size of z is set to 50 and the input data is assumed to have 196 features (14× 14). The size of c depends on the
dataset as it must be equal to the number of clusters.

Given a random variable z and a random encoding vector c, G first applies a fully connected (FC) layer and a batch
normalization (BN) layer to generate a tensor of size 128 × 7 × 7. We then upscale the tensor by factor of 2 and apply a 2D
convolutional (CONV) layer reducing the number of channels to 64. With a stride of 1 for both dimensions, a padding of 1 on
all sides, and a kernel of size 3× 3, we then obtain a tensor of size 64× 14× 14. Next, the tensor is fed into another BN layer
with a rectified linear unit (ReLU) activation. The final layer of G is a 2D CONV layer with tanh activation.

D and Q share a single network for feature representation; we repeatably apply a group of layers which consists of a 2D
CONV layer with ReLU activation, a dropout layer, and a BN layer. The stride of each CONV layer is set to 2 and the number
of channels is reduced by factor of 2 starting from 16. Therefore, the final tensor has a size of 64× 2× 2. D and Q then apply
different FC layers to evaluate authenticity and to reconstruct the initial encoding vector c, respectively.

While Combiner has an additional FC layer for Qco that reconstructs d, AutoEncoder has R which reconstructs the original
pairs from encoding pairs. The network architecture of R is same as G except that their input and output tensor have different
sizes; the input for R is the concatenation of c′r and c′c and the output is the concatenation of row and column samples.

3. HYPERPARAMETER TUNING FOR SYNTHETIC DATASETS

Since CI-GAN consists of multiple networks, we have applied grid search to find the best hyperparameter setting for each
model. For Combiner, every component is trained with the learning rate of 0.00005. Qco is trained once for every three epochs
of row and column training. The quality of the generated co-clusters is found to be better when G is updated along with Qco.
On the other hand, AutoEncoder produces the best result with the learning rate of 0.0001. Training G along with R is found to
be unnecessary when R is trained once for every five epochs of row and column training.

4. SAMPLE CO-CLUSTERS ON SYNTHETIC DATASETS

Figure 5∼9 are co-clusters generated from one of the experiments on synthetic datasets. Each entries are colored based on
gist ncar r colormap of Matplotlib and the two dimensions are grouped based on their labels for better interpretation.

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

0 1 2

0

1

2

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

0 1 2 3

0

1

2

3

Fig. 5. Co-clusters and accuracy on Diagonal dataset. From left to right: Original, Spec-Co (1.000), Spec-Bi (1.000), Info-CC
(0.579), SA-CC (1.000), CoClus (0.563), Combiner (1.000), AutoEncoder (1.000).
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Fig. 6. Co-clusters and accuracy on Checker-Shuffled dataset. From left to right: Original, Spec-Co (1.000), Spec-Bi
(1.000), Info-CC (0.636), SA-CC (1.000), CoClus (0.333), Combiner (1.000), AutoEncoder (1.000).
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Fig. 7. Co-clusters and accuracy on Checker-Ordered dataset. From left to right: Original, Spec-Co (0.255), Spec-Bi
(0.037), Info-CC (0.784), SA-CC (0.132), CoClus (0.333), Combiner (0.640), AutoEncoder (1.000).
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Fig. 8. Co-clusters and accuracy on Mixed-Identical dataset. From left to right: Original, Spec-Co (0.266), Spec-Bi
(0.519), Info-CC (0.333), SA-CC (0.206), CoClus (0.333), Combiner (0.604), AutoEncoder (0.574).

0 1 2 3

0

1

2

3

0 1 2 3
0

1

2

3

0 1 2 3

0

1

2

3

0 1

0

1

0 1 2 3

0

1

2

3

0 1

0

1

0 1 2 3
0

1

2

3

0 1 2 3

0

1

2

3

Fig. 9. Co-clusters and accuracy on Mixed-Similar dataset. From left to right: Original, Spec-Co (0.057), Spec-Bi (0.519),
Info-CC (0.333), SA-CC (0.203), CoClus (0.333), Combiner (0.601), AutoEncoder (0.650).
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